Lane marking detection via deep convolutional neural network
نویسندگان
چکیده
منابع مشابه
Relation Classification via Convolutional Deep Neural Network
The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the pe...
متن کاملPedestrian Detection with Deep Convolutional Neural Network
The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملDeep Columnar Convolutional Neural Network
Recent developments in the field of deep learning have shown that convolutional networks with several layers can approach human level accuracy in tasks such as handwritten digit classification and object recognition. It is observed that the state-of-the-art performance is obtained from model ensembles, where several models are trained on the same data and their predictions probabilities are ave...
متن کاملBrain Abnormality Detection by Deep Convolutional Neural Network
In this paper, we describe our method for classification of brain magnetic resonance (MR) images into different abnormalities and healthy classes based on deep neural network. We propose our method to detect high and low grade glioma, multiple sclerosis, and Alzheimer diseases as well as healthy cases. Our network architecture has ten learning layers that include seven convolutional layers and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2018
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2017.09.098